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bstract

In this paper a novel combined battery model for state-of-charge (SoC) estimation in lead-acid batteries, based on extended Kalman filter (EKF)
s presented. To obtain a more accurate SoC estimation technique, a combination of the two previously used models (RC and hysteresis battery

odels) is introduced; trying to compensate deficiencies of the individual models. The changes in the behavior of the battery are considered in

he proposed SoC estimation method which makes it suitable for hybrid electric vehicle (HEV) applications. The effectiveness of the proposed

ethod is verified using an experimental test. This Kalman filter modeling approach is shown to give SoC estimation error within 2% compared
ith Ah counting method; therefore, better results are obtained in comparison with the other conventional methods.
2007 Elsevier B.V. All rights reserved.
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. Introduction

Continuous growing fuel cost and increasing restrictive
utomobile standards are forcing automobile manufacturers to
esign new vehicles such as Stop&Start, hybrid, or electric vehi-
les. The underlying idea is to reduce fuel consumption and
xhaust emissions in the urban areas either by stopping the motor
hen the vehicle is not moving, or by replacement of fossil fuels
y rechargeable electric batteries. In order to achieve this goal,
ar builders have to solve electrical energy storage and man-
gement problems. Proposed solutions involve electric energy
torage, novel battery designs, fuel cells or super capacitors. Just
s it is important to know the amount of fuel remaining in an
utomobile, the SoC of the battery is an essential factor in HEV
nd EV operation.
Accurate estimation of the SoC can improve energy manage-
ent and efficient utilization of batteries in HEV by optimizing

he performance, extending the lifetime and preventing perma-
ent damage to the batteries.
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tric vehicle; State-of-charge

During discharge/charge, the energy capability of a battery
epends on a number of parameters including discharge/charge
urrent, Coulombic efficiency losses, temperature, battery age,
ut-off voltage, and service history (previous charge and dis-
harge) [1,2]. The SoC of the battery is a complex non-linear
unction of these parameters. Therefore, a variety of techniques
as been proposed to measure or monitor the SoC of a cell or
attery [2–20], each has its relative merits, as reviewed by Piller
t al. [21]. Charge counting or current integration is, at present,
he most commonly used technique, requiring dynamic measure-

ent of the cell/battery current which its time integral provides a
irect indication of SoC [3–5]. However, because of the reliance
n integration, errors in terminal measurements due to noise, res-
lution and rounding are cumulative and large SoC errors can
e resulted. Therefore, a reset or recalibration action is required
t regular intervals for all electric vehicles (EVs). This may be
arried out during a full charge or conditioning discharge, but it
s less appropriate for standard HEV operation where full SoC

s rarely achieved [2,7].

The specific gravity of the electrolyte is known to be an accu-
ate measure of SoC in flooded lead-acid cells, but this method
s not suitable for valve regulated lead-acid (VRLA) cells, as
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he nominal amount of electrolyte is often immobilized in the
eparator and access to the cell inside is limited. Nevertheless,
ince the open-circuit terminal voltage of a VRLA battery varies
lmost linearly over the majority of the battery’s SoC [2,9], it
as been used in many SoC estimators.

Another broad category of cell modeling and SoC estima-
ion involves measuring cell impedances over a wide range of
c frequencies at different states of charge [10–12,22]. Values of
he model parameters are found by least-squares fitting to mea-
ured impedance values. SoC may be indirectly obtained from
easuring present cell impedance and correlating them with

nown impedances at various SoC levels. We do not consider
his method in our application, as we have no direct method to
nject signals into cells to measure impedances.

Other reported methods for estimating SoC have been based
n artificial neural networks (ANNs) [13,14] and fuzzy logic
rinciples [15,16]. The main advantage of the ANN-based meth-
ds, which makes them distinguishable from the other methods,
s that they are capable of estimating SoC when the initial SoC
s unknown. However, the implementation of these methods is
elatively expensive and needs the training data of a similar bat-
ery [23], which may limit the application of these methods. In
ontrast, in fuzzy-based techniques, easy implementation is a
reat feature.

Fuzzy logic and ANN-based methods are used to avoid
he need for a large number of empirically derived parameters
equired by the other methods; these methods are best suited for
ortable equipment applications where precise predicting of SoC
s not needed [17]. A good survey of the advantage and limitation
f these methods can be found in Ref. [23]. Also, a neural net-
ork model for predicting battery power capacity during driving

ycles has been added to the Advisor EV and HEV modeling
nvironments [24]. Recently, KF and EKF-based methods have
een used to estimate SoC [2,6–8,18]. Kalman filter is an intel-
igent, and sometimes optimal, means for estimating the state
f a dynamic system; therefore many researches have used this
redictive nature of KF [25,26] to estimate SoC.

In this paper, first we introduce a new battery model (a combi-
ation of RC and hysteresis models), and then we use a method
ased on EKF for estimating SoC in lead-acid batteries. How-
ver, the proposed state-of-charge estimation method and battery
odel can be easily extended to other types of battery. To test the

apability of the proposed model in HEVs, an experimental test
s applied to Toyota Prius, where Ni-MH batteries are replaced
ith 25 Ah lead-acid batteries, in NYCC driving cycle [24]. The
aper is organized as follows. In Section 2 the dynamic model
f the battery is presented. Implementation of the proposed SoC
stimation technique is described in Section 3, and Section 4
resents some experimental tests that confirm the effectiveness
f the estimation method. Finally the conclusions are presented
n Section 5.

. Battery model
In this section first, a brief overview of the RC and the hys-
eresis battery model are presented and their advantages and
rawbacks are considered separately, finally the new proposed

2
t
m

Fig. 1. RC battery model.

ybrid battery model which is a combination of both RC and
ysteresis model are presented.

.1. RC battery model

RC model is a dynamic model of the battery which consists of
bulk capacitor, Cbulk, to characterize the ability of the battery

o store charge, a capacitor to model surface capacitance and dif-
usion effects within the battery, Csurface, a terminal resistance,
t, surface resistance, Rs, and end resistance, Re [2] as shown in
ig. 1.

In the case of valve regulated lead-acid (VRLA) batteries,
idely used in HEV applications, since the open-circuit termi-
al voltage of a VRLA battery varies almost linearly over the
ajority of the battery’s SoC (Fig. 2) [2,20], we can employ this

haracteristic to estimate SoC in VRLA batteries.

.1.1. Calculation of initial parameters
Initial parameters required for the battery RC model are deter-

ined from experimental data. In this paper we have used a 6 V
Ah sealed lead-acid battery manufactured by Optima-Palma
attery Co.; where open-circuit voltage (OCV) tests are per-

ormed upon successive discharge of battery by injection of
urrent pulses [2,24].

.1.1.1. Capacitor Cbulk. The capacitance is determined by
nalyzing the amount of stored energy. Fig. 3 shows the OCV
hen discharge current pulses of 0.2 A are applied for 3300 s

t 6600-s intervals. The energy stored in Cbulk is determined
rom the OCV at 0% SoC and 100% SoC, using the following
xpression:

Cbulk = 1
2CbulkV

2 = 1
2Cbulk(V 2

100% SOC − V 2
0% SOC) (1)

Cbulk is equivalent to the rated Amp-sec capacity of the battery,
iving

bulk-initial = rated(Amp-sec)V100% SOC

(1/2)(V 2
100% SOC − V 2

0% SOC)
(2)

100% SOC and V0% SOC are illustrated in Fig. 3(b).
.1.1.2. Capacitor Csurface. The initial value of Csurface relies on
he results of high-frequency excitation of the battery to deter-

ine the time constant given by the surface capacitor and its
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Fig. 2. Open-circuit voltage vs. SoC.
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Fig. 3. (a) Discharge curren

ssociated resistance [2,24]. As before, OCV tests are performed
nd discharge pulses of 1.1 A are applied at 500-ms intervals,
hereby isolating the results from the effects of Cbulk. From
ig. 4, it is seen that
V1 = 6.55, V2 = 6.34, V3 = 6.49,

V4 = 6.52 (�t = 0.5 s)

ig. 4. Battery terminal voltage when a pulse discharge current of 1.1 A is
pplied.
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b) battery terminal voltage.

The time constant is approximated using the following rela-
ionship:

no-load = V1 = V3 + (V4 − V3)(1 − et/τ) (3)

nd solving for τ gives

= −�t ln

(
1 − V4 − V3

V1 − V3

)
= 0.3466 s (4)

The time constant is described by

= (Rs + Re)Csurface (5)

Hence, the initial estimate of surface capacitor, is determined
s

= τ
(6)
surface-initial

Re + Rs

.1.1.3. Battery resistance. The internal resistance of the bat-
ery is measured as 0.25 �. It is assumed that Rs and Re are
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Table 1
Initial parameters for battery model

Parameters Value

Cbulk 2100 F
Csurface 0.5 F
R
R
R

e
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Vtk = OCV(SoCk) − Rik + hk (15)
e 0.375 �

s 0.375 �

t 0.0625 �

quivalent and account for 80% of total resistance. Hence, Rt is

.25 = Rt +
[

1

Re
+ 1

Rs

]−1

(7)

A summary of the initial values is given in Table 1.

.1.2. Differential and state-space equations of the model
Equations that describe the characteristics of the model

hown in Fig. 1 are given in [2] (note: by convention, the current
owing into the battery is considered to be positive):

˙cb = − Vcb

2ReCbulk
+ Vcs

2RECbulk
+ I

2Cbulk
(8)

˙cs = − Vcs

2CsurfaceRe
+ Vcb

2CsurfaceRe
+ I

2Csurface
(9)

˙t =
[
− 1

2ReCbulk
+ 1

2CsurfaceRe

]
Vcb

+
[

1

2ReCbulk
− 1

2CsurfaceRe

]
Vt

+
[

1

2Csurface
− Rt

2ReCbulk
+ Rt

2ReCsurface

]
I (10)

n these equations, for simplicity we assume that Rs = Re and
he charging rate of terminal current (dI/dt ≈ 0), per sampling
nterval when implemented digitally, is negligible.

Here, we have added an extra state α = 1/Cbulk into the model
tate space and assuming that the rate of change of Cbulk, over
sampling interval, is negligible, e.g. dα/dt = 0. Therefore, we
ave new state-space description of the network as

˙ = f (x, u), y = C(x), x = [ Vcb Vcs Vt α ]T (11)

here x is the state vector

(x) = Vt, u = I, f (x, u) = [ f1 f2 f3 f3 ]T (12)

hat Vt and u are the system output and input, respectively:

f1 = −x4x1

2Re
+ x4x2

2RE
+ x4I

2
,

f2 = − x2

2CsurfaceRe
+ x1

2CsurfaceRe
+ I

2Csurface
,

[ ] [ ]

f3 = − x4

2Re
+ 1

2CsurfaceRe
x1 + x4

2Re
− 1

2CsurfaceRe
x3

+
[

1

2CSurface
− Rtx4

2Re
+ Rt

2ReCsurface

]
I, f4 = 0 (13)

F
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.1.3. Observability of the RC battery model
Observability of the system must be investigated after sys-

em linearization. Calculating the observability matrix shows
hat, this matrix is always of full rank, under mild conditions
2].

The main advantage of this model is that it models the
ynamic behavior of the battery. It can also detect the battery
apacity fade due to cycling. The main drawbacks of the model
re that the hysteresis effect is not included, parameter identi-
cation is only occurred once and static OCV curve is used to
etermine SoC.

.2. Hysteresis battery model

The hysteresis effect has serious consequences in predicting
oC and may be seen during rest periods. Following a dis-
harge, the battery voltage always relaxes to a value less than
he true OCV for that SoC, and following a charge, the battery
oltage always relaxes to a value greater than the true OCV
27].

We illustrate the hysteresis effect by showing the
harge/discharge curves at the C/2 rate and room temperature
n Fig. 5(a), also the hysteresis voltage is plotted versus SoC in
ig. 5(b). As the battery is charged or discharged, the level of
ysteresis changes slowly. This slow transition can be modeled
y adding a hysteresis state (h) to the model state equation. The
iscrete state equations of the model are as follows [7]:

hk+1

SoCk+1

]
=

[
F (ik) 0

0 1

] [
hk

SoCk

]

+
⎡
⎣ 0 (1 − F (ik))

−ηi �t

Cn

0

⎤
⎦

[
ik

M(SoC,
·

SoC)

]

(14)
ig. 5. (a) Hysteresis discharge/charge curves and (b) the hysteresis level.
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here SoCk and hk are the battery SoC and hysteresis voltage
evel at step k, respectively. Cn is the battery nominal capacity,
i is the battery Coulombic efficiency (ηi = 1 for discharge, and
i = η ≤ 1 for charge), �t is suitably small sampling period time
nd Vt, i are battery terminal voltage and current (assumed pos-
tive for discharge, negative for charge), respectively. R is the

attery internal resistance and M(SoC,
·

SoC) is a function that
ives the maximum polarization due to hysteresis as a function of

oC and the rate-of-change of SoC. Specifically, M(SoC,
·

SoC)

s positive for charge (
·

SoC > 0) and is negative for discharge
·

SoC < 0). We define F(ik) = exp(−|ηiikγ�t/Cn|), where γ is
positive constant. This model is not linear in the parameters

herefore advanced nonlinear methods, such as EKF, are used to

dentify the unknown parameters [7]. The identification method
ill be explained in Section 3.2.
In spite of having some advantages [7], this model has major

isadvantages including the use of static SoC–OCV curves,

d
i
c
t

Fig. 6. Block diagram of the S
Sources 174 (2007) 30–40

nability in modeling the capacity fade and difficulties in imple-
entation of the identification method.

.3. The proposed battery model

This new battery model shown in Fig. 6 is a combination of
wo previously mentioned models. The RC model acts as the
rimary model. It prepares the required data for parameter iden-
ification of the secondary model (hysteresis model) and also

odels the battery capacity fade by means of the state variable
. Using the output data of RC model, the hysteresis model
secondary model) identifies its own unknown parameters and
pdates them every 10 sample (every 1 s). At the same time, it
stimates the battery SoC. Therefore, we have a model which

irectly includes several effecting factors in the battery model-
ng such as hysteresis effect, battery capacity degradation and
hanges in the internal resistance of the battery. Furthermore, as
he identification of the model parameters occur sequentially, the

oC estimation method.
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ffect of the other factors such as temperature, pressure, cycling,
tc., is taken into account automatically.

. Implementation

In this section we describe the implementation of the model
ia EKF. The model implementation procedure can be divided
nto three main steps as shown in Fig. 6:

1) OCV and SoC estimation using EKF in the RC model.
2) Parameter identification of the hysteresis model using the

first step outputs.
3) SoC estimation of the hysteresis model by EKF.

.1. Step1: OCV and SoC estimation using EKF in RC
odel

In order to apply the EKF, a small-signal model of the system
s required. As the model state equations are nonlinear (Eqs. (12)
nd (13), we use the well-known Jacobian matrixes to linearize
hese equations about the current operating point x0 and u0:

ẋ = Akδx + Bkδu, δy = Ckδx (16)

here

k = df (x, u)

dx

∣∣∣∣
xk,uk

, Bk = df (x, u)

du

∣∣∣∣
xk,uk

,

Ck = dC(x)

dx

∣∣∣∣
xk,uk

= C (17)

Now, we calculate these matrixes for our system:

Ak =

⎡
⎢⎢⎢⎣

a11 a12 0 a14

a21 a22 0 0

a31 0 a33 a34

0 0 0 0

⎤
⎥⎥⎥⎦ ,

a11 = −a12 = − x4k

2Re
, a14 = −x1k + x2k + IkRe

2Re
,

a21 = −a22 = 1

2ReCsurface
, a31 = − x4k

2Re
+ 1

2ReCsurface
,

a33 = x4k

2Re
− 1

2ReCsurface
, a34 = − x1k

2Re
+ x3k

2Re
− IkRt

2Re
(18)

nd

Bk =
[

x4k

2

1

2Csurface
b13 0

]T

,

b13 = 1 − Rtx4k + Rt (19)

2CSurface 2Re 2ReCsurface

ltimately,

= [ 0 0 1 0 ] (20)

a
a
n
m

Sources 174 (2007) 30–40 35

Assuming the applied input u is constant during each sam-
ling interval; discrete-time equivalent model of the system is
iven by

k+1 = Adxk + Bduk, yk+1 = Hxk+1 (21)

here

dk ≈ I + Ak �T, Bdk = Bk �T, H = C (22)

nd �T is the sampling period. The system is now assumed to
e corrupted by stationary Gaussian white noise, via the additive
ectors, σk and μk, the former being used to represent system
isturbances and model inaccuracies and the latter represents the
ffects of the measurement noise. Both σk and μk are considered
o have a zero mean value, for all k, with the following covariance

atrices (E denoting the expectation operator):

[ σk σT
k ]=Q for all k, E[ μk μT

k ]=R for all k (23)

he resulting system is, therefore, described as follows:

k+1=Adkxk + Bdkuk + σk, zk+1=Hxk+1 + μk+1 (24)

here z is the vector of measured outputs after being corrupted
y noise.

For notational purpose, we define x̂−
k (note the “super minus”)

o be a priori state estimate at step k given knowledge of the
rocess prior to step k, and x̂k to be a posteriori state estimate at
tep k given by the measurement zk [25,26]. Now we can define
priori and a posteriori estimate errors as

−
k = xk − x̂−

k , ek = xk − x̂k (25)

he a priori and the a posteriori estimate error covariance are
hen are then

−
k = E[ e−

k e−T
k

], Pk = E[ e−
k eT

k ] (26)

A property of the EKF is that it estimates the state vector of
he system, x̂k, by minimizing the sum-of-squared errors, Pk,
etween the actual and the estimated states:

in {Pk} = min {E[ (xk − x̂k) (xk − x̂k)T ]} (27)

he recursive EKF algorithm [25,26] is implemented with the
redictor/corrector stages as shown in Fig. 7. The EKF esti-
ate, x̂k+1, is calculated from the previous state estimate, x̂k,

he input vector, u, and the measurement signals, z. The available
nput/output data at each sample step is considered to be u0, u1,
2, . . ., uk, uk+1, and z0, z1, z2, . . ., zk, zk+1.

Since only terminal quantities of the battery can be measured,
he input is defined as u = I and the measured output is y = Vt.
lthough no formal stability and tuning methods are available

or initializing the EKF, recourse to empirical tuning is nor-
ally required and its use is widespread. Information about the

ystem noise contribution is held in matrices Q and R and, in
ssence, the selection of Q and R determines the accuracy and
he performance of the filter, since they mutually determine the

ction of the EKF gain matrix, Kk+1, and estimation error covari-
nce matrix, Pk+1. The R, covariance matrix of the measurement
oise, can be estimated from the knowledge of the battery ter-
inal voltage. The variance is obtained from the square of the
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Fig. 7. Recurs

oot-mean-square (rms) noise at each cell, and is assumed to
ave Gaussian distribution and be independent.

Initialization of the covariance matrix describing distur-
ances on the plant (Q) is complicated by the fact that knowledge
f the model inaccuracies and system disturbances is limited,
articularly as each battery has different characteristics. An
stute choice of Q is obtained from experimental studies under
he simplifying assumption that there is no correlation between
he elements of σk and the noise present on each battery’s volt-
ge transducers, thereby leading to a diagonal Q. The initial
ovariance matrix P0 together with Q and R, for our case, are
ltimately chosen to be

P0 =

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦ , R = 10,

Q =

⎡
⎢⎢⎢⎣

0.5 0 0 0

0 0.5 0 0

0 0 0.005 0

0 0 0 0.0001

⎤
⎥⎥⎥⎦ (28)

.2. Step 2: parameter identification of the hysteresis model

In order to use the hysteresis model, we need to identify
he unknown parameters (θ = [ R+ E− M γ ]T). Due to
onlinear equations of the hysteresis model, it is necessary to

se nonlinear identification methods, such as EKF. To do so,
e require a state-space model describing the dynamics of the
nknown parameters of the model (θ). We will use the Kalman
lter as an optimum observer of these parameter’s values, cre-

a

C

F algorithm.

ting an estimate θ̂. In electro-chemical batteries, the actual
arameters change very slowly, so we model them as a constant
ith some small perturbation [7]:

k+1 = Aθk + Bu + rk (29)

here

=

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦ , B = 0 (30)

The small white noise input, rk, is imaginary, but mod-
ls the slow change in the parameters of the system and the
ynamic behavior of the battery. The output equation required
or Kalman-filter system identification must be a measurable
unction of the system parameters. We use

k = yk + ek (31)

here yk is the output equation of the hysteresis model
yk = OCV(SoCk)−Rik + hk), and ek models both the sensor noise
nd the modeling error. We compare yk, computed using θ̂k, with
he measured battery output and adapt θ̂k to minimize the differ-
nce. Now, we can estimate the system parameters by applying
KF to this state-space model and battery data. It is important to
otify that the new output equation is still nonlinear in unknown
arameters and requires linearization, therefore we introduce Ck

s follows:

k = dyk

dθ

∣∣∣∣
θ=θ̂−

k

(32)
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indicate that the proposed approach can yield to better SoC
results in comparison with those obtained using conventional
techniques such as Ah counting and RC modeling (equivalent
circuit).
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ˆ−
k is a priori estimation of θ at step k.

k = dy(xk, uk, θ)

dθ
= ∂y(xk, uk, θ)

∂θ
+ ∂y(xk, uk, θ)

∂xk

dxk

dθ

dxk

dθ

= ∂f (xk−1, uk−1, θ)

∂θ
+ ∂f (xk−1, uk−1, θ)

∂xk−1

dxk−1

dθ
(33)

For this model we have

dy(xk, uk, θ)

dθ
= [ −i+ −i− 0 0 ] + dhk

dθ

dhk

dθ

=
[

0 0 (1 − Fk−1) sgn(ik−1) (M − hk−1)

∣∣∣∣η
here hk, i−, i+, F, �t, ηi, C were defined in battery hysteresis
odel (Section 2.2).To implement this identification method,

hree sets of data are required:

1) measurable terminal parameters of the battery (Vt, It),
2) SoC and OCV which are obtained from the battery RC

model, and
3) hysteresis voltage derived from a static curve.

Now we can simply identify the unknown parameters by
pplying KF relations (shown in Fig. 7) to our new state-space
quations.

.3. Step 3: SoC estimation of the hysteresis model by EKF

After identifying the unknown parameters of the battery hys-
eresis model, we can easily estimate the model states via EKF.
xcept for Q and R matrices, this step is similar to Section 3.1.
herefore, in order to avoid redundancy, we neglect the detailed
escription of this step. As a result the hysteresis voltage is esti-
ated and more accurate values for SoC can be obtained. The

elative Q and R matrices are as follows:

=
[

0.01 0

0 0.001

]
, R = 10 (35)

. Simulation results

For experimental tests a 6 V 1 Ah VRLA battery, manufac-
ured by Optima-Palma Co., is used as a case study. These tests
ave been carried out by a battery test unit Solartron 1470. The
aximum current of the test unit is limited to 4 A, so we have to

cale the battery current to 1/25 in Toyota Prius where Ni-MH
atteries have been replaced with 25 Ah lead-acid batteries [24].
.1. Experimental tests

In this section the capability and the accuracy of the pro-
osed method in estimating SoC is verified by two experimental
ests, and finally the obtained results are compared with the Ah
ounting method and RC modeling technique.
Sources 174 (2007) 30–40 37

1 �t
∣∣∣∣ Fk−1

]
+ Fk−1

dhk−1

dθ
(34)

.1.1. Model validation test
Here, we assess the proposed model validity by a discharge

ulse current of 1/5C (A). Our criterion for the model accuracy
s the difference between the measured and estimated terminal
oltage, the smaller error indicates the better accuracy [2]. The
urrent profile, measured and estimated terminal voltages and
heir errors are shown in Figs. 8 and 9.

As shown in Fig. 9, it is apparent that the estimated output
oltage error is less than 60 mV which shows the model is able
o estimate the model states accurately.

.1.2. The main test
In this test the capability of the proposed model in HEV

pplication is examined. To do so, six successive NYCC driving
ycles are applied to Toyota Prius with 25 Ah lead-acid batter-
es [24] where the initial SoC of the batteries is 0.9. As the
ase study battery is 1 Ah, the battery current is scaled to 1/25.
YCC driving cycle and its related battery current are shown in
igs. 10 and 11.

The input current of the case study battery (scaled cur-
ent), measured and estimated terminal voltages are illustrated
n Figs. 12 and 13.

The error between the measured and the estimated output
oltage is shown in Fig. 13(b). The error is approximately 0.3 V
hich is acceptable for HEV application due to fast deviation
f the battery current.

Fig. 14(a) shows the SoC obtained from the combined
odel, Ah counting method, and RC modeling technique. The
oC obtained from the combined model shows an estimation
rror within 2% in comparison with Ah counting, as a refer-
nce method (Fig. 14(b)); even better results can be achieved
f the initial transience caused by inaccurate initial values is
gnored. The estimation error of SoC in RC model compared
ith Ah counting method is shown in Fig. 14(c). The results
Fig. 8. Battery current profile in validation test.
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Fig. 9. (a) Measured and estimated battery terminal voltage in validation test. (b) Error between the measured and the estimated battery terminal voltage.

Fig. 10. Six successive NYCC driving cycles [24].

Fig. 11. Battery current in Toyota Prius.

Fig. 12. Battery current case study.
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Fig. 13. (a) Measured and estimated battery terminal voltage in the main test. (b) Error between the measured and the estimated battery terminal voltage.
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ig. 14. (a) The SoC obtained from the combined model, Ah counting method, a
odel and Ah counting method. (c) Error between the SoC estimated from the

. Conclusion

In this paper a novel combined model for lead-acid batteries
as been presented, and then an EKF-based algorithm has been
eveloped to estimate SoC. The proposed method can accurately
odel the dynamic behavior of the battery which makes it appro-

riate for HEV application. The capability of the proposed model
as been verified by two experimental tests, the validation test
ith pulse current and the main test which is applied to Toyota
rius in NYCC driving cycle. The presented tests have shown
hat the proposed method gives SoC estimation with the error
ess than 2%. The results reveal that the proposed method shows
great performance when it is compared with other conventional
ethods such as Ah counting and RC modeling (equivalent

R

C modeling technique. (b) Error between the SoC estimated from the combined
odeling technique and Ah counting method.

ircuit). However, the proposed method, like other methods,
as limitations in low temperatures and very high discharge
ates.
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