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Abstract

In this paper a novel combined battery model for state-of-charge (SoC) estimation in lead-acid batteries, based on extended Kalman filter (EKF)
is presented. To obtain a more accurate SoC estimation technique, a combination of the two previously used models (RC and hysteresis battery
models) is introduced; trying to compensate deficiencies of the individual models. The changes in the behavior of the battery are considered in
the proposed SoC estimation method which makes it suitable for hybrid electric vehicle (HEV) applications. The effectiveness of the proposed
method is verified using an experimental test. This Kalman filter modeling approach is shown to give SoC estimation error within 2% compared
with Ah counting method; therefore, better results are obtained in comparison with the other conventional methods.
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1. Introduction

Continuous growing fuel cost and increasing restrictive
automobile standards are forcing automobile manufacturers to
design new vehicles such as Stop&Start, hybrid, or electric vehi-
cles. The underlying idea is to reduce fuel consumption and
exhaust emissions in the urban areas either by stopping the motor
when the vehicle is not moving, or by replacement of fossil fuels
by rechargeable electric batteries. In order to achieve this goal,
car builders have to solve electrical energy storage and man-
agement problems. Proposed solutions involve electric energy
storage, novel battery designs, fuel cells or super capacitors. Just
as it is important to know the amount of fuel remaining in an
automobile, the SoC of the battery is an essential factor in HEV
and EV operation.

Accurate estimation of the SoC can improve energy manage-
ment and efficient utilization of batteries in HEV by optimizing
the performance, extending the lifetime and preventing perma-
nent damage to the batteries.
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During discharge/charge, the energy capability of a battery
depends on a number of parameters including discharge/charge
current, Coulombic efficiency losses, temperature, battery age,
cut-off voltage, and service history (previous charge and dis-
charge) [1,2]. The SoC of the battery is a complex non-linear
function of these parameters. Therefore, a variety of techniques
has been proposed to measure or monitor the SoC of a cell or
battery [2-20], each has its relative merits, as reviewed by Piller
et al. [21]. Charge counting or current integration is, at present,
the most commonly used technique, requiring dynamic measure-
ment of the cell/battery current which its time integral provides a
direct indication of SoC [3-5]. However, because of the reliance
on integration, errors in terminal measurements due to noise, res-
olution and rounding are cumulative and large SoC errors can
be resulted. Therefore, a reset or recalibration action is required
at regular intervals for all electric vehicles (EVs). This may be
carried out during a full charge or conditioning discharge, but it
is less appropriate for standard HEV operation where full SoC
is rarely achieved [2,7].

The specific gravity of the electrolyte is known to be an accu-
rate measure of SoC in flooded lead-acid cells, but this method
is not suitable for valve regulated lead-acid (VRLA) cells, as
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the nominal amount of electrolyte is often immobilized in the
separator and access to the cell inside is limited. Nevertheless,
since the open-circuit terminal voltage of a VRLA battery varies
almost linearly over the majority of the battery’s SoC [2,9], it
has been used in many SoC estimators.

Another broad category of cell modeling and SoC estima-
tion involves measuring cell impedances over a wide range of
ac frequencies at different states of charge [10-12,22]. Values of
the model parameters are found by least-squares fitting to mea-
sured impedance values. SoC may be indirectly obtained from
measuring present cell impedance and correlating them with
known impedances at various SoC levels. We do not consider
this method in our application, as we have no direct method to
inject signals into cells to measure impedances.

Other reported methods for estimating SoC have been based
on artificial neural networks (ANNs) [13,14] and fuzzy logic
principles [15,16]. The main advantage of the ANN-based meth-
ods, which makes them distinguishable from the other methods,
is that they are capable of estimating SoC when the initial SoC
is unknown. However, the implementation of these methods is
relatively expensive and needs the training data of a similar bat-
tery [23], which may limit the application of these methods. In
contrast, in fuzzy-based techniques, easy implementation is a
great feature.

Fuzzy logic and ANN-based methods are used to avoid
the need for a large number of empirically derived parameters
required by the other methods; these methods are best suited for
portable equipment applications where precise predicting of SoC
isnotneeded [17]. A good survey of the advantage and limitation
of these methods can be found in Ref. [23]. Also, a neural net-
work model for predicting battery power capacity during driving
cycles has been added to the Advisor EV and HEV modeling
environments [24]. Recently, KF and EKF-based methods have
been used to estimate SoC [2,6-8,18]. Kalman filter is an intel-
ligent, and sometimes optimal, means for estimating the state
of a dynamic system; therefore many researches have used this
predictive nature of KF [25,26] to estimate SoC.

In this paper, first we introduce a new battery model (a combi-
nation of RC and hysteresis models), and then we use a method
based on EKF for estimating SoC in lead-acid batteries. How-
ever, the proposed state-of-charge estimation method and battery
model can be easily extended to other types of battery. To test the
capability of the proposed model in HEVs, an experimental test
is applied to Toyota Prius, where Ni-MH batteries are replaced
with 25 Ah lead-acid batteries, in NYCC driving cycle [24]. The
paper is organized as follows. In Section 2 the dynamic model
of the battery is presented. Implementation of the proposed SoC
estimation technique is described in Section 3, and Section 4
presents some experimental tests that confirm the effectiveness
of the estimation method. Finally the conclusions are presented
in Section 5.

2. Battery model
In this section first, a brief overview of the RC and the hys-

teresis battery model are presented and their advantages and
drawbacks are considered separately, finally the new proposed
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Fig. 1. RC battery model.

hybrid battery model which is a combination of both RC and
hysteresis model are presented.

2.1. RC battery model

RC model is a dynamic model of the battery which consists of
a bulk capacitor, Cpyk, to characterize the ability of the battery
to store charge, a capacitor to model surface capacitance and dif-
fusion effects within the battery, Cgyrface, @ terminal resistance,
R;, surface resistance, R, and end resistance, R, [2] as shown in
Fig. 1.

In the case of valve regulated lead-acid (VRLA) batteries,
widely used in HEV applications, since the open-circuit termi-
nal voltage of a VRLA battery varies almost linearly over the
majority of the battery’s SoC (Fig. 2) [2,20], we can employ this
characteristic to estimate SoC in VRLA batteries.

2.1.1. Calculation of initial parameters

Initial parameters required for the battery RC model are deter-
mined from experimental data. In this paper we have useda 6 V
1 Ah sealed lead-acid battery manufactured by Optima-Palma
Battery Co.; where open-circuit voltage (OCV) tests are per-
formed upon successive discharge of battery by injection of
current pulses [2,24].

2.1.1.1. Capacitor Cpy. The capacitance is determined by
analyzing the amount of stored energy. Fig. 3 shows the OCV
when discharge current pulses of 0.2 A are applied for 3300s
at 6600-s intervals. The energy stored in Cpyik is determined
from the OCV at 0% SoC and 100% SoC, using the following
expression:

Ecy = %Cbulk V= %Cbulk(vlz 00% SOC ~— V(%% soc) )
Ec,, 18 equivalent to the rated Amp-sec capacity of the battery,
giving

rated(Amp-sec) Vi0o% soc
(1/2)(V1200% SoC — V()z% SOC)

Vioo% soc and Vg, soc are illustrated in Fig. 3(b).

@

Chulk-initial =

2.1.1.2. Capacitor Cyypface- Theinitial value of Cyyrface T€lies on
the results of high-frequency excitation of the battery to deter-
mine the time constant given by the surface capacitor and its
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Fig. 3. (a) Discharge current and (b) battery terminal voltage.

associated resistance [2,24]. As before, OCV tests are performed
and discharge pulses of 1.1 A are applied at 500-ms intervals,
thereby isolating the results from the effects of Cpyk. From
Fig. 4, it is seen that

Vi =655V, =634,
V4 =652 (At=0.55)

V3 =6.49,

Time (sec)

Fig. 4. Battery terminal voltage when a pulse discharge current of 1.1 A is
applied.

The time constant is approximated using the following rela-
tionship:

Vaodoad = Vi = V3 + (Va = V3)(1 — e/ 3)

and solving for 7 gives

7= —Atln (1 — H) =0.34665s 4
The time constant is described by

T = (Rs + Re)Ciurface ®)

Hence, the initial estimate of surface capacitor, is determined
as

T

—_— 6
R T R 6)

Csurface-initial =

2.1.1.3. Battery resistance. The internal resistance of the bat-
tery is measured as 0.25 Q. It is assumed that R; and R, are
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Table 1

Initial parameters for battery model

Parameters Value
Chuik 2100F
Csurface 0.5F

Re 0.375Q
Ry 0.375Q
Ry 0.0625

equivalent and account for 80% of total resistance. Hence, R; is

1 117!
025=Ri+ |— + — 7
t+|:Re+Rs:| @)

A summary of the initial values is given in Table 1.

2.1.2. Differential and state-space equations of the model

Equations that describe the characteristics of the model
shown in Fig. 1 are given in [2] (note: by convention, the current
flowing into the battery is considered to be positive):

3 Veb Ves I
Vep = — + (3)
2ReChuik ~ 2ReChuik  2Chuik
. Ves Veb I
Ves = — + + ©)
. 2Csurface Re 2Csurface Re 2Csurface
Vi [ ! + ! ] |%
= |- b
' 2Re Chuik 2Csurface Re ¢

1 1
+ [ - } Vi
2Rerulk 2Csu1‘face Re

{ 1 R; R ]
+ 1 10)

- +
2 Ciurface 2 Re Cpuik 2 Re Cyurface

In these equations, for simplicity we assume that Ry =R. and
the charging rate of terminal current (d//df= 0), per sampling
interval when implemented digitally, is negligible.

Here, we have added an extra state o = 1/Cpyx into the model
state space and assuming that the rate of change of Cyyk, over
a sampling interval, is negligible, e.g. da/dt=0. Therefore, we
have new state-space description of the network as

X = f(x,u),

where x is the state vector

few=I0f fr A A1 12

that V; and u are the system output and input, respectively:

y=Cw, x=[Va Ve Vi al' (D)

Clx) =W,

u=1I,

X4X1  X4xp x4l

fi=- 2R. ' 2Rg 2
7 b %) + X1 n 1
2= - )
2Csurface R. 2Csurface Re 2Csurface
X4 X4 1
P W N T
2R. 2CsurfaceRc 2R, 2CsurfaceRc

|: 1 Rtx4 Rl

+ I, 4=0(13)
2Re 2Re Csurface :| f

2CSurface

2.1.3. Observability of the RC battery model

Observability of the system must be investigated after sys-
tem linearization. Calculating the observability matrix shows
that, this matrix is always of full rank, under mild conditions
[2].

The main advantage of this model is that it models the
dynamic behavior of the battery. It can also detect the battery
capacity fade due to cycling. The main drawbacks of the model
are that the hysteresis effect is not included, parameter identi-
fication is only occurred once and static OCV curve is used to
determine SoC.

2.2. Hysteresis battery model

The hysteresis effect has serious consequences in predicting
SoC and may be seen during rest periods. Following a dis-
charge, the battery voltage always relaxes to a value less than
the true OCV for that SoC, and following a charge, the battery
voltage always relaxes to a value greater than the true OCV
[27].

We illustrate the hysteresis effect by showing the
charge/discharge curves at the C/2 rate and room temperature
in Fig. 5(a), also the hysteresis voltage is plotted versus SoC in
Fig. 5(b). As the battery is charged or discharged, the level of
hysteresis changes slowly. This slow transition can be modeled
by adding a hysteresis state (%) to the model state equation. The
discrete state equations of the model are as follows [7]:

hivr | | FG) O] | hx
SoCr41 0 1 SoCy
0 (I = F(ix)) i
+ n;i At .
v 0 M(SoC, SoC)
n
(14)
Vi = OCV(SoCy) — Riy + hy (15)
T T T T T T T T
change : : : :
65 dischange| ...... -

8
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Fig. 5. (a) Hysteresis discharge/charge curves and (b) the hysteresis level.
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where SoCy, and &y are the battery SoC and hysteresis voltage
level at step k, respectively. C,, is the battery nominal capacity,
n; is the battery Coulombic efficiency (1; =1 for discharge, and
n;=n <1 for charge), At is suitably small sampling period time
and Vi, i are battery terminal voltage and current (assumed pos-
itive for discharge, negative for charge), respectively. R is the

battery internal resistance and M (SoC, SoC) is a function that
gives the maximum polarization due to hysteresis as a function of

SoC and the rate-of-change of SoC. Specifically, M(SoC, SéC)
is positive for charge (SoC > 0) and is negative for discharge

(SoC < 0). We define F(iy) =exp(—|n;iry At/Cy|), where y is
a positive constant. This model is not linear in the parameters
therefore advanced nonlinear methods, such as EKF, are used to
identify the unknown parameters [7]. The identification method
will be explained in Section 3.2.

In spite of having some advantages [7], this model has major
disadvantages including the use of static SoOC-OCV curves,

Measurement
systm

inability in modeling the capacity fade and difficulties in imple-
mentation of the identification method.

2.3. The proposed battery model

This new battery model shown in Fig. 6 is a combination of
two previously mentioned models. The RC model acts as the
primary model. It prepares the required data for parameter iden-
tification of the secondary model (hysteresis model) and also
models the battery capacity fade by means of the state variable
a. Using the output data of RC model, the hysteresis model
(secondary model) identifies its own unknown parameters and
updates them every 10 sample (every 1s). At the same time, it
estimates the battery SoC. Therefore, we have a model which
directly includes several effecting factors in the battery model-
ing such as hysteresis effect, battery capacity degradation and
changes in the internal resistance of the battery. Furthermore, as
the identification of the model parameters occur sequentially, the
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Fig. 6. Block diagram of the SoC estimation method.
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effect of the other factors such as temperature, pressure, cycling,
etc., is taken into account automatically.

3. Implementation

In this section we describe the implementation of the model
via EKF. The model implementation procedure can be divided
into three main steps as shown in Fig. 6:

(1) OCV and SoC estimation using EKF in the RC model.

(2) Parameter identification of the hysteresis model using the
first step outputs.

(3) SoC estimation of the hysteresis model by EKF.

3.1. Stepl: OCV and SoC estimation using EKF in RC
model

In order to apply the EKF, a small-signal model of the system
isrequired. As the model state equations are nonlinear (Egs. (12)
and (13), we use the well-known Jacobian matrixes to linearize
these equations about the current operating point xo and ug:

8x = Apdx + Bidu, 8y = Cydx (16)
where
Ap = df(x,u) B, — df(x,u)
dx xk,uk’ du Xk,uk’
dC(x)
Cr = =C 17
dx Xty

Now, we calculate these matrixes for our system:

ain a0 ap
ay axp O 0

Ay =
as; 0 as3 axy
0 0 0 0
. S _ Xt xo + LkRe
11 12 2Re s 14 2Re s
1 X4k + 1
apl = —a = ~—(——~ » 431 = — -~ ~h ~
2Re Ciurface 2Re 2Re Ciurface
X4 1 Xk | X3k kR
asz = — 55 A s a3 =— + -
2Re 2Recsurface 2Re 2Re 2Re
(18)
and
1 T
By = e biz 0,
2 2Csurface
1 R R
biz = _ RXak t (19)
2CSurface 2Re 2Re Csurface
ultimately,
C=[0 0 1 0] (20)

Assuming the applied input u is constant during each sam-
pling interval; discrete-time equivalent model of the system is
given by

Xg+1 = Agxg + Bauyg, Vi1 = Hxpyq 21
where
Ag ~ 1+ Ay AT, By =By AT, H=C (22)

and AT is the sampling period. The system is now assumed to
be corrupted by stationary Gaussian white noise, via the additive
vectors, o and pg, the former being used to represent system
disturbances and model inaccuracies and the latter represents the
effects of the measurement noise. Both o and u are considered
to have a zero mean value, for all k, with the following covariance
matrices (£ denoting the expectation operator):

Elox o] 1=Qforallk, E[wk wpfl=Rforallk  (23)

The resulting system is, therefore, described as follows:

Xk+1=AdkXk + Barug + o, Zhr1=Hxpp1 + 1 24)

where z is the vector of measured outputs after being corrupted
by noise.

For notational purpose, we define % (note the “super minus™)
to be a priori state estimate at step k given knowledge of the
process prior to step k, and X to be a posteriori state estimate at
step k given by the measurement z; [25,26]. Now we can define
a priori and a posteriori estimate errors as

ey =X — X, er = Xp — Xk (25)
The a priori and the a posteriori estimate error covariance are
then are then

P =Ele; ¢ 1.  Pc=Ele, ¢f] (26)

A property of the EKF is that it estimates the state vector of
the system, Xk, by minimizing the sum-of-squared errors, P,
between the actual and the estimated states:

min { Py} = min {E[ (o — &) (g — 320" 1) 27

The recursive EKF algorithm [25,26] is implemented with the
predictor/corrector stages as shown in Fig. 7. The EKF esti-
mate, %41, is calculated from the previous state estimate, X,
the input vector, u, and the measurement signals, z. The available
input/output data at each sample step is considered to be ug, u1,
U2, ...y Uk, U, And 20, 21, 22, + - +» Tk Tht1-

Since only terminal quantities of the battery can be measured,
the input is defined as u=1 and the measured output is y="V;.
Although no formal stability and tuning methods are available
for initializing the EKF, recourse to empirical tuning is nor-
mally required and its use is widespread. Information about the
system noise contribution is held in matrices Q and R and, in
essence, the selection of Q and R determines the accuracy and
the performance of the filter, since they mutually determine the
action of the EKF gain matrix, K41, and estimation error covari-
ance matrix, Pry1. The R, covariance matrix of the measurement
noise, can be estimated from the knowledge of the battery ter-
minal voltage. The variance is obtained from the square of the
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Time Update (“Predict™)

(1) Project the state ahead
25 = o1 i)
(2) Project the error covariance ahead

- T
B = 4B A + iy

Initial estimation for fk-l and ch-l

Measurement Update (“Correct”)

(1) Compute the Kalman gain
— o g7 - 7T
K, =B HI (P H] + R, )
(2) Update estimate with measurement Zj,
%, =25 + Kz, - hlee )
(3) Update the error covariance

5 =(I‘Kka)3c_

Fig. 7. Recursive EKF algorithm.

root-mean-square (rms) noise at each cell, and is assumed to
have Gaussian distribution and be independent.

Initialization of the covariance matrix describing distur-
bances on the plant (Q) is complicated by the fact that knowledge
of the model inaccuracies and system disturbances is limited,
particularly as each battery has different characteristics. An
astute choice of Q is obtained from experimental studies under
the simplifying assumption that there is no correlation between
the elements of o and the noise present on each battery’s volt-
age transducers, thereby leading to a diagonal Q. The initial
covariance matrix Py together with Q and R, for our case, are
ultimately chosen to be

100 0
o Y DR ST
0010
00 0 1
05 0 0 0
0 05 0 0
=146 0 0005 o %)
0 0 0 0000l

3.2. Step 2: parameter identification of the hysteresis model

In order to use the hysteresis model, we need to identify
the unknown parameters (§ = [RT E- M y]T). Due to
nonlinear equations of the hysteresis model, it is necessary to
use nonlinear identification methods, such as EKF. To do so,
we require a state-space model describing the dynamics of the
unknown parameters of the model (). We will use the Kalman
filter as an optimum observer of these parameter’s values, cre-

ating an estimate 0. In electro-chemical batteries, the actual
parameters change very slowly, so we model them as a constant
with some small perturbation [7]:

Ok+1 = A6k + Bu +ry (29)
where
1 0 0 O
01 0 O
A= , B=0 (30)
0 0 1 0
0 0 0 1

The small white noise input, ry, is imaginary, but mod-
els the slow change in the parameters of the system and the
dynamic behavior of the battery. The output equation required
for Kalman-filter system identification must be a measurable
function of the system parameters. We use

dr = yr + e 3D

where y; is the output equation of the hysteresis model
(v =0OCV(S0oCy)—Riy + hy), and e, models both the sensor noise
and the modeling error. We compare y;, computed using &y, with
the measured battery output and adapt 6 to minimize the differ-
ence. Now, we can estimate the system parameters by applying
EKF to this state-space model and battery data. It is important to
notify that the new output equation is still nonlinear in unknown
parameters and requires linearization, therefore we introduce Cy
as follows:

_du

Cr= (32)
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ék_ is a priori estimation of 0 at step k.

_ Dy, uk, 0) _ OyCuk, u, 0) | By(xk, . 0) do dxy

C
k o 9 e do do
of (Xg—1, ug—1, 0 d 1, Uk—1,0) dxp_
Zf(k1k1)+f(xklukl)xkl (33)
a0 0Xk_1 de
For this model we have
d Uk, 0 . . dhy dh
YOk, uk, 0) [—it —i~ 0 o074 Ywd
do do do

=10 0 (- Fe—1)sgn(ix—1) (M — hig—1)

where I, i~, it, F, At, n;, C were defined in battery hysteresis
model (Section 2.2).To implement this identification method,
three sets of data are required:

(1) measurable terminal parameters of the battery (Vi, I),

(2) SoC and OCV which are obtained from the battery RC
model, and

(3) hysteresis voltage derived from a static curve.

Now we can simply identify the unknown parameters by
applying KF relations (shown in Fig. 7) to our new state-space
equations.

3.3. Step 3: SoC estimation of the hysteresis model by EKF

After identifying the unknown parameters of the battery hys-
teresis model, we can easily estimate the model states via EKF.
Except for Q and R matrices, this step is similar to Section 3.1.
Therefore, in order to avoid redundancy, we neglect the detailed
description of this step. As a result the hysteresis voltage is esti-
mated and more accurate values for SoC can be obtained. The
relative Q and R matrices are as follows:

001 0
| 0 0001’

4. Simulation results

R=10 (35)

For experimental tests a 6V 1 Ah VRLA battery, manufac-
tured by Optima-Palma Co., is used as a case study. These tests
have been carried out by a battery test unit Solartron 1470. The
maximum current of the test unit is limited to 4 A, so we have to
scale the battery current to 1/25 in Toyota Prius where Ni-MH
batteries have been replaced with 25 Ah lead-acid batteries [24].

4.1. Experimental tests

In this section the capability and the accuracy of the pro-
posed method in estimating SoC is verified by two experimental
tests, and finally the obtained results are compared with the Ah
counting method and RC modeling technique.

Niik—1 At
C

4.1.1. Model validation test

Here, we assess the proposed model validity by a discharge
pulse current of 1/5C (A). Our criterion for the model accuracy
is the difference between the measured and estimated terminal
voltage, the smaller error indicates the better accuracy [2]. The
current profile, measured and estimated terminal voltages and
their errors are shown in Figs. 8 and 9.

As shown in Fig. 9, it is apparent that the estimated output
voltage error is less than 60 mV which shows the model is able
to estimate the model states accurately.

dhg_1
do

(34)

Fk—l:| + Fr—1

4.1.2. The main test

In this test the capability of the proposed model in HEV
application is examined. To do so, six successive NYCC driving
cycles are applied to Toyota Prius with 25 Ah lead-acid batter-
ies [24] where the initial SoC of the batteries is 0.9. As the
case study battery is 1 Ah, the battery current is scaled to 1/25.
NYCC driving cycle and its related battery current are shown in
Figs. 10 and 11.

The input current of the case study battery (scaled cur-
rent), measured and estimated terminal voltages are illustrated
in Figs. 12 and 13.

The error between the measured and the estimated output
voltage is shown in Fig. 13(b). The error is approximately 0.3 V
which is acceptable for HEV application due to fast deviation
of the battery current.

Fig. 14(a) shows the SoC obtained from the combined
model, Ah counting method, and RC modeling technique. The
SoC obtained from the combined model shows an estimation
error within 2% in comparison with Ah counting, as a refer-
ence method (Fig. 14(b)); even better results can be achieved
if the initial transience caused by inaccurate initial values is
ignored. The estimation error of SoC in RC model compared
with Ah counting method is shown in Fig. 14(c). The results
indicate that the proposed approach can yield to better SoC
results in comparison with those obtained using conventional
techniques such as Ah counting and RC modeling (equivalent
circuit).

0.2 i —

0.05r 1

Discarge Current (A)

0 05 1 15 2 25 3
Time (sec) x 10?

Fig. 8. Battery current profile in validation test.
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Fig. 9. (a) Measured and estimated battery terminal voltage in validation test. (b) Error between the measured and the estimated battery terminal voltage.
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Fig. 12. Battery current case study.
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Fig. 13. (a) Measured and estimated battery terminal voltage in the main test.

(b) Error between the measured and the estimated battery terminal voltage.
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Fig. 14. (a) The SoC obtained from the combined model, Ah counting method, and
model and Ah counting method. (c) Error between the SoC estimated from the RC

5. Conclusion

In this paper a novel combined model for lead-acid batteries
has been presented, and then an EKF-based algorithm has been
developed to estimate SoC. The proposed method can accurately
model the dynamic behavior of the battery which makes it appro-
priate for HEV application. The capability of the proposed model
has been verified by two experimental tests, the validation test
with pulse current and the main test which is applied to Toyota
Prius in NYCC driving cycle. The presented tests have shown
that the proposed method gives SoC estimation with the error
less than 2%. The results reveal that the proposed method shows
a great performance when it is compared with other conventional
methods such as Ah counting and RC modeling (equivalent

RC modeling technique. (b) Error between the SoC estimated from the combined
modeling technique and Ah counting method.

circuit). However, the proposed method, like other methods,
has limitations in low temperatures and very high discharge
rates.
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